
88 Linux Format December 2008

Coding: Make

Our
expert

Mike Saunders

once hacked the
NetBSD kernel to
provide Alt+cursor
key virtual terminal
switching.
Nowadays he
mainly works on
his operating
system at http://
mikeos.berlios.de.

You asked for more, so here we go: Mike Saunders puts pedal to the metal
with a car-based driving romp in just under 100 lines of code. Vroom!

Coding Write a top-down racer
and expand your PyGame skills

T
wo issues ago, we ran a one-off programming tutorial in

which we wrote a mini Space Invaders clone called

PyInvaders. The feedback has been fantastic: from the

forum posts and emails that we’ve received, it’s clear that lots of

you have enjoyed learning new programming techniques and

enhancing the code. Many thanks! This month we’re kicking off a

three-part series continuing the game programming theme – and

first in the line is a top-down racer.

As before, we’re going to use PyGame, a combination of the

effortlessly readable Python language and the SDL multimedia

libraries. Python’s syntax is as simple as you can get, unladen with

curly brackets and other clutter that you typically see in other

languages. This makes it ideal if you’re fairly new to coding: these

tutorials don’t aim to teach programming from scratch, but if

you’ve played around with a bit of code before, you won’t find

them hard to follow.

If you’ve never seen a line of Python before, grab a copy of

LXF110 (see back issues on page 106) which includes a quick

primer. This month we’re going to expand on our PyGame

knowledge in three key areas:

 Mouse handling Whereas PyInvaders solely used the keyboard,

here we’ll demonstrate how to track the mouse position to

manipulate the player.

 Playing music and sounds What’s a game without some toe-

tapping tunes and crisp sound effects? Pretty drab, that’s what.

We’ll use PyGame to get your speakers doing their job.

 Using text and fonts We only used sprites in PyInvaders, but in

many games you’ll want to incorporate an on-screen score display.

Thankfully, PyGame includes some excellent routines to create

and manipulate text in just a few lines of code.

Part 1 Getting the right files

To make PyRacer, our top-down view driving game, we’re going to

need some audio and graphics files. If you’re feeling in a creative

mood (especially likely after you’ve read our cover feature!), you

can craft these files yourself using the guidelines below. If not, see

the Magazine/PyRacer section of the DVD for a tarball containing

example files.

PyRacer will be contained in a single source file, pyracer.py,

with a directory called data next to it. In data you’ll need:

 car_player.png A 40x100-pixel image of the player’s car

(overhead view with the car facing north). Use PNG transparency

to cut out non-car bits, so it’s not one solid rectangle and the road

will be visible beneath.

 car_enemy.png As above, but flipped vertically.

 whiteline.png A 20x80-pixel line, and solid white (or textured if

you’re going for eye candy). As you can guess, this will be used for

the markings in the middle of the road.

 tree.png A 65x110-pixel image of, yep, a tree! This will be

repeated and moved down the side of the road to give a sensation

of speed. As with the car images, use transparency outside of the

trunk and leaves so that the background will show through.

 background.mod The background music in MOD format, as

generated by, for example, SoundTracker (see the Audio section of

the DVD). You can easily create your own MOD tunes, or search

online for more (beware of copyright though!).

 crash.wav A lovely, crunching sound effect to be played when

the player’s car hits the enemy car.

As mentioned, these are all supplied on the DVD if you don’t

want to create your own. Or why not recruit someone else to

handle the media side while you concentrate on the code? If the

kids are bored, throw them a copy of Gimp and tell them you want

some top-class sprite images on your desk by the morning, or

you’re changing the locks next time they’re out.

 Tutorial code
 SoundTracker 0.6.8

In LXF110 We made a complete Space Invaders clone in just a few lines of code.

LXF112.tut_code 88 29/9/08 6:27:5 pm

December 2008 Linux Format 89

 PyGame Tutorial

You can make your

Python programs

run without having

to type in python

program.py by

making the file

executable (chmod

+x program.py, for

example) and adding

a line at the top of

the code: #!/usr/

bin/env python.

Now you can just run

./program.py or

double-click it in a

file manager.

Quick
tip

 a racing game

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

Part 2 Start your engines

Let’s move on to the code. From here onwards you’ll see the code

that’s in the tarball on the LXFDVD, split up into chunks for our

explanations. Note that Python code is indented with tabs – if the

indents look smaller than tabs here, that’s just to stop the code

wrapping around multiple lines of print where necessary. Also

remember that you can add comments to your code using hash

(#) marks, which is useful for marking reminders or explanations.

from pygame import *

import random

The first two lines set up our Python environment, saying that

we want to use all the functions of the PyGame library (hence the

asterisk wildcard), and also random-number functionality. Without

these lines, we’d only be able to use the bare functionality supplied

with Python, so importing extra modules is essential.

class Sprite:

 def __init__(self, xpos, ypos, filename):

 self.x = xpos

 self.y = ypos

 self.bitmap = image.load(filename)

 def render(self):

 screen.blit(self.bitmap, (self.x, self.y))

You may remember a chunk of code similar to this in the

PyInvaders tutorial. A class, in object oriented programming terms,

is a description for a chunk of data and associated routines.

Imagine it as a blueprint for a box, explaining what the box can

store, and how it can be used. The class Sprite definition here just

defines the blueprint – it doesn’t do anything yet, as we have to

create real boxes (instances of the class) later on.

Get started, innit?
The __init__ routine is called when we create a new instance of the

Sprite class, and as you can see, it takes four parameters. Actually,

we can forget about self, as that’s internal to the class – so when

creating a new Sprite object, we pass its initial X and Y positions,

plus a filename that’s used to load the sprite image. This class also

includes a render routine which displays the sprite on the screen;

we’ll see how that’s used later on.

def Intersect(s1_x, s1_y, s2_x, s2_y):

 if (s1_x > s2_x - 40) and (s1_x < s2_x + 40) and (s1_y > s2_y -

40) and (s1_y < s2_y + 40):

 return 1

 else:

 return 0

You may also remember this beast from PyInvaders. This is the

collision detection routine, and looks almost unfathomable at first,

but it’s not actually that complicated. Basically, it takes four

parameters: the X and Y positions of one sprite, and the X and Y

positions of another. It then determines whether or not those

sprites overlap at all on the screen, returning 1 if so or 0 if not. You

can see many references to the number 40 – that’s the width of

the car sprites. (So yes, those numbers are hard-coded and in a

bigger game you’d want this routine to be independent of sprite

sizes, but we’re striving for simplicity here.)

init()

screen = display.set_mode((640,480))

display.set_caption(‘PyRacer’)

Next up we tell PyGame to get out of its chair and start working

with the init() routine, and then set the video mode and caption

that will appear in the window manager’s title bar.

mixer.music.load(‘data/background.mod’)

mixer.music.play(-1)

Here’s our first foray into the world of sound. PyGame includes

a module called mixer, which handles music and sound effects,

and in the first line here, we’re loading the MOD file that will play in

the background. The second line sets the music playing, and you

can pass it a parameter stating how many times you want the

piece of music to be played. If you pass -1, as we’re doing here, it

means “Play the music in a loop forever” (well, until we quit the

game).

playercar = Sprite(20, 400, ‘data/car_player.png’)

enemycar = Sprite(random.randrange(100, 500), 0, ‘data/car_

enemy.png’)

tree1 = Sprite(10, 0, ‘data/tree.png’)

tree2 = Sprite(550, 240, ‘data/tree.png’)

whiteline1 = Sprite(315, 0, ‘data/whiteline.png’)

whiteline2 = Sprite(315, 240, ‘data/whiteline.png’)

Co-ordinate yourself

Working with the screen and sprites can

be a bit perplexing for novices, because it

takes a certain way of thinking to address

particular points on the screen. When we

consider graphs, for instance, we’re used to

them starting in the bottom-left, with

increasing values in both axes moving our

plotting points up and to the right.

With computer graphics (most of the

time!) we work from the top-left, moving

downwards and rightwards. So, if you’ve set

up a game window that’s 640x480 pixels,

position 0,0 will be zero pixels across and

zero pixels down. That’s the top-left. If you

move to 0,240, that’s zero pixels across and

240 down – ie halfway down the screen.

Position 320,240 is the middle of the

screen, and 639,479 is the furthest bottom-

right pixel.

Hang on… why 639 and not 640? Well, in

typical computing practice, we start

counting from 0, so 639 is the same as 640

if we were counting from one. It’s these

little things that always keep you on your

toes when hacking!

 The top-left of our tree sprite is

addressed by 0,0 and the bottom-right

by 64,109 (we’re counting from zero).

LXF112.tut_code 89 29/9/08 6:27:6 pm

90 Linux Format December 2008

Tutorial PyGame

sound object called crasheffect using the data/crash.wav file.

score = 0

maxscore = 0

quit = 0

Before we kick off the main game loop, we’ll set up a few

variables. Note that in Python, you’re not forced to initialise

variables in this way and can often just start using them when

required, but doing this makes the code much easier to

understand – you know what’s coming up. Score is the current

score, maxscore holds the highest score attained as the game

progresses (it’s not reset when the cars collide), and quit changes

to 1 when the game window receives a close event (ie the user

clicks the X in the title bar).

while quit == 0:

 screen.fill((0,200,0))

 screen.fill((200,200,200), ((100, 0), (440, 480)))

So, here’s the start of our main loop. While quit is set to zero,

we execute the following indented code. At the beginning of every

game loop, we draw the background, first filling the entire screen

with a green colour. 0,200,0 is an RGB (red, green, blue) triplet, so

here it’s set to zero red, a fairly strong green (200) and zero blue.

(The maximum value for each of these is 255.)

The green, green grass
The second screen.fill line draws the grey road on top of the

grassy green background. Because the road doesn’t fill up the

entire screen, we pass two extra parameters – the starting point

(100 pixels across and 0 pixels down), and the finishing point (440

pixels across and the bottom of the game window).

 tree1.render()

 tree1.y += 10

 if (tree1.y > 480):

 tree1.y = -110

 tree2.render()

 tree2.y += 10

 if (tree2.y > 480):

 tree2.y = -110

Now we draw the tree objects: one on the left-hand side of the

road, and one on the right. When we initialised these objects

earlier in the code, we gave tree1 a starting vertical position of 0

pixels and tree2 a position of 240. So, one starts at the top of the

screen, and the other starts in the middle, to add a bit of variety to

the scenery.

In each game loop, we call render() on the tree objects, and

increment their vertical positions down the screen by 10 pixels.

When the trees move off the bottom of the screen, we reset their

positions to above the top of the game window – hence -110 rather

than 0. If we used 0, the trees would magically appear in full at the

top of the window, instead of being introduced gradually.

 whiteline1.render()

 whiteline1.y += 10

 if (whiteline1.y > 480):

 whiteline1.y = -80

 whiteline2.render()

 whiteline2.y += 10

 if (whiteline2.y > 480):

 whiteline2.y = -80

This is very similar to as the tree code, except that it handles

the white lines. We reset the positions to -80 when the white lines

go off screen, as that’s the height of the images in pixels.

 enemycar.render()

 enemycar.y += 15

 if (enemycar.y > 480):

Never miss another issue Subscribe to the #1 source for Linux on p102.

Now we start to use the Sprite class that we defined at the

start of the code. In line 1 we say that we want a new Sprite object

called playercar with an initial X position of 20 (ie 20 pixels

across the game window), an initial Y position of 400, and using

car_player.png in the data directory as a sprite image.

We do the same for the enemy car – the car that’s coming

from the opposite direction. We only need to create one enemy

car, because when it goes past and off the bottom of the window,

we can start it from the top again at a different position. Then we

create two tree sprites, one for each side of the screen, and two

white-line sprites that will scroll down the middle of the screen to

enhance the illusion of movement.

scorefont = font.Font(None, 60)

crasheffect = mixer.Sound(‘data/crash.wav’)

The last two things we need to set up are our font for the score

display, and a sound effect for collisions. For the former, we call on

PyGame’s ‘font’ routines to create a new font object, passing

‘None’ to say “Give me a generic font” (you could be more specific,

but it might impede portability of the game to other platforms).

The ‘60’ specifies the font size. For the latter, we create a new

 In LXF110 we

made this funky

Space Invaders

clone – see page

106 to get your

hands on a copy.

Power up with new features

Got to grips with the code? Excellent – it’s

time to start adding more! Try your hand

at these extra features…

 Easy Random speeds. Right now the

oncoming cars always move at the same

speed (15 pixels per game loop). You could

set up a new variable before the main

game loop, then, in play, set it to a random

value and update the enemy car

accordingly. When the enemy car goes off

screen, you set up a new random

accelerator value for the next car.

 Medium Damage indicator. Maybe

resetting the score on collision is a bit

harsh? Perhaps the car should be able to

take a bit of damage before the score

counter is zeroed? This isn’t too hard to

add, but there are many different ways you

could implement it. Try adding a collision

indicator to the top-right of the screen that

counts up from 0% to 100%, based on the

text routines in the game.

 Hard More cars. Having multiple enemy

cars on the screen at any given point

would really flesh out the game, but you

have to be careful. You don’t want the

enemy cars to overlap (it’d look very

strange), nor do you want situations to

arise where the game is impossible, with

too many cars and no escape path.

Let us know how you get on at

www.linuxformat.co.uk/forums!

LXF112.tut_code 90 29/9/08 6:27:7 pm

December 2008 Linux Format 91

 PyGame Tutorial

 enemycar.y = -100

 enemycar.x = random.randrange(100, 500)

Here’s the snippet of code that handles the oncoming cars.

We first draw the car at its current position, then increment its

position down the screen by 15 pixels (so it’s moving faster than

the trees and white lines). If the enemy car moves off the bottom

of the screen, we set it to above the top, so that it can gracefully

move back into view, and set its horizontal (X) position to a

random place between 100 and 500 pixels on the road.

 x, y = mouse.get_pos()

 if (x < 100):

 x = 100

 if (x > 500):

 x = 500

 playercar.x = x

 playercar.render()

Time for some mouse handling. To get the mouse coordinates

in PyGame, simply call mouse.getpos(), which returns two values

– the horizontal position and the vertical position. In our case, the

player car stays at the bottom of the screen, so we’re only

interested in the X (horizontal) value.

Also, when the player is moving the car with the mouse, we

want to keep the car on the road (unless you fancy adding some

tree collision routines!). So we limit the X position to being at a

minimum 100 pixels from the left edge of the game window, and

140 from the right edge. Remember that the car sprite is 40 pixels

wide, which means the right side of the car sprite can be at X

position 540 according to our limits.

Word up
 scoretext = scorefont.render(‘Score: ‘ + str(score), True,

(255,255,255), (0,0,0))

 screen.blit(scoretext, (5,5))

Writing text to the screen is very easy in PyGame. In the first line,

we create a new bitmap image called scoretext. Using scorefont.

render(), we pass four parameters: the text we want to print,

whether it should be anti-aliased, the colour of the text, and the

background colour. Note that we’ve joined the word ‘Score:’ with

the actual value of our score numeric variable by converting the

latter to a string using str(score).

The second line here simply renders our scoretext object to

the screen at the specified position. We’ve indented the score by

five pixels horizontally and vertically because it looks a bit purdier.

 if (Intersect(playercar.x, playercar.y, enemycar.x, enemycar.y)):

 mixer.Sound.play(crasheffect)

 if (score > maxscore):

 maxscore = score

 score = 0

Here’s where the Intersect routine that we defined earlier has

its fun. It checks to see if the player car and enemy car sprites

overlap in any way; if so, it plays the crash sound effect, checks to

see if the current score is the maximum score, and updates

maxscore if so. Then it resets the current score and continues the

game loop.

 for ourevent in event.get():

 if ourevent.type == QUIT:

 quit = 1

When PyGame programs are running, they can receive events

from the window manager and keyboard. Here we check to see if

there are any events waiting to be processed, and if so, check to

see if it’s a QUIT event (ie the player has tried to close the window).

If so, we set our quit variable to 1, which will end the main loop.

 display.update()

 time.delay(5)

 score += 1

display.update() is a crucial function in PyGame – puts into place

all the background and sprite work that we did earlier in the game

loop, so without it, nothing on the screen will be rendered. Then we

add a delay, so that it won’t run insanely quickly on fast machines,

and increment the score counter. You’ll notice that this is the end

of the code indentation, so it’s back to the start of the main loop

(the while bit)!

print ‘Your maximum score was:’, maxscore

And the final line simply spits out the maximum score to the

terminal window.

To use the code from the DVD, copy pyracer.tar.gz from the

Magazine/PyRacer section to your home directory, open a

terminal window and enter:

tar xfvz pyracer.tar.gz

cd pyracer

python pyracer.py

That extracts the .tar.gz archive, switches into the resulting

directory and runs the code. Now you can edit pyracer.py to add

new features as described in the box, or beautify the sprites in the

data directory – happy hacking! LXF

 Check out this leaked screenshot of the next Gran Turismo game! Japes aside,

graphics aren’t a big concern when you’re coding – you can prettify things later.

Make it with Mike

Hopefully you’ve got a lot from this tutorial,

and we still have two more to come. The

game project in LXF113 is shrouded in

secrecy – as we go to press, only the five

richest kings of Europe know what it’s going

to be about. But stay tuned next month

when all will be revealed!

For LXF114, the final tutorial, we’re

opening the floor for suggestions. Tell us

what kind of game you’d like to see, and

we’ll get Mike to write the code with detailed

explanations in the mag! The game has to

be simple; we can’t recreate Grand Theft

Auto IV in 150 lines of code. It’d also be good

to make use of all the techniques we’re

practising – keyboard handling, mouse co-

ordinates, fonts, sounds and so forth.

So, if you’ve got a corking idea that can

be realised in under 150 lines of code, go to

www.linuxformat.co.uk/gamemaking and

post a message in the forum thread. We’ll

try to reply to every suggestion.

Next month More gaming fun to look forward to, as we expand our PyGame skills.

LXF112.tut_code 91 29/9/08 6:27:7 pm

