
TUTORIALS The LXF Server

64     LXF282 November 2021 www.linuxformat.com

SERVERS

than useful if, while trying to plan a balanced meal for
your upcoming marathon, you were instead served up
the latest depressing news titbits from The Economist.

Thankfully there’s software out there which can help
your server to direct traffic to the right directory or port,
and return a response that is both coherent and
appropriate to what you are trying to achieve.

If you followed part one of our VPS series you will
have already installed Apache Server. Apache is old-
school cool, and straight out of the box, it can do exactly
what we want it to.

Apache employs user-created .conf files to tell it
what it’s supposed to be doing, and in their most basic
form they are pretty simple to understand. They contain
the name of the virtual server, what ports to listen on
and the Document Root location, which is where the
files you want to serve up are kept.

Apache conf files should be created in /etc/
apache2/sites-available/. For instance, the .conf file
which relates to our fabulous Linux Format URL
shortening engine (as it was first set up) looks like this:
<VirtualHost *:80>
ServerName lxf.by
DocumentRoot /var/www/lxf/public/
</VirtualHost>

That’s easy to understand. Apache is listening on

kay, so you’ve decided you
need a Virtual Private
Server in your life. It’s a

great idea, and will allow you to run
a whole bunch of self-hosted, web-
facing software without the noise,
expense and energy bill associated
with setting up a server in the
cupboard under the stairs at home.
The magical orphans you already
have stashed there will be pleased.

If you’re a regular reader of these
hallowed pages, you’ve probably
already seen our VPS feature in
LXF281, which covered such
essentials as what a VPS actually is,
why you’d want one, how to choose a provider and initial
setup. In case you missed it, we’ve been kind enough to
provide a PDF copy of the article which you can find at
https://bit.ly/lxf281lxfserver. Go and read it then
come back.

Up to speed? Good. But there is so much more
you need to know, and choices you need to make. This
article will help to guide you through some of the basics
you need to keep your spanky new VPS safe, secure and
working as it should. Don’t worry, they’re not difficult
choices, but they will have an effect on how you install
and use software.

Actual server software
Your VPS is a virtual machine running in a datacentre
in a different part of the world. You’re going to be
accessing the services you run on it via one or more
domain names. But how do you ensure that you
connect to the right service?

For instance, if you’ve installed Jellyfin to manage
your media, Mealie to keep track of your recipes,
Wger to track your personal fitness and FreshRSS to
aggregate the latest news on your behalf, you’ll need
four separate domain names, or at the very least sub-
domains (many self-hosted sites need to function from
a domain root). And this collection of names will need to
point at the static IP address of your VPS.

With all of these incoming requests, your VPS needs
to know how to serve the right content. It would be less

This excellent web-facing recipe manager can be up and running with
a single command thanks to Docker.

How to build the
Linux Format server
Start running your own server with the help of David Rutland and
our new series on what to do with one once you’ve got it!

David Rutland
is a tinkerer and
a dilettante. He
buys domains on
a whim and runs
them from a
Raspberry Pi
behind the couch.

O

OUR
EXPERT

Running
software
services on a
Virtual Private
Server is as easy
or as hard as
you want it to
be. Deploying a
raft of Docker
containers is
simple, but
you’ll miss out
on what’s going
on under the
bonnet. Try
doing things
the long way
where you can
- it will give you
a better idea
of how your
services work.

Part One!
Don’t miss
next issue,

subscribe on
page 26!

The LXF Server TUTORIALS

November 2021 LXF282     65www.techradar.com/pro/linux

The docker-
compose.yml file
can be used to
start and manage
dozens of services.
The only required
skill is a mastery of
Ctrl+C and Ctrl+V.

 A PATCHY SERVER

port 80 for HTTP requests to lxf.by. When any requests
to lxf.by come in, they are directed to the contents of
the directory /var/www/lxf/public/.

Apache .conf files will, later on, contain more
interesting details such as SSL certificate locations,
internal port mapping and access controls. You don’t
need to worry about those right this second.

With Apache, for each service you use you will need
to create a .conf file providing the relevant details;
activate it by typing
sudo a2ensite /etc/apache2/sites-available/
yournewservice.conf

and then restart apache with:
sudo service apache2 restart.

When directing traffic to individual domains, Apache
is acting as a reverse proxy. But Apache isn’t the only
server software in town which can manage your traffic
for you. There are dozens of projects which are more or
less specialised, easier to use or more comprehensive.

Apache’s chief competitor is Nginx, which, like
Apache, serves around one quarter of the entire traffic
on the internet. It’s faster and more lightweight than
Apache, but it’s more difficult to install and configure,
and more importantly, doesn’t allow admins to override
system-wide access settings on a per-file basis.

Nginx is also embroiled in an ongoing ownership
dispute in the Russian Federation. We don’t feel
comfortable recommending a piece of software –
regardless how good – which could be yoinked from
the world at any moment.

tOther server software capable of running as a
reverse proxy includes Hiawatha, WEBrick and
Cherokee. Although each of these have their own
benefits and advantages, they are not nearly as popular
as Apache or Nginx, so it will be considerably more
difficult to find online support from fellow users.

Security matters
See that little padlock up in the corner of your address
bar? Sometimes, it will say secure, or TLS, or SSL. It
means that the traffic between your machine and the
webpage you’re connected to is encrypted.

In theory, no-one can eavesdrop on exactly what
you’re doing, and even your ISP can only see what
site you’re visiting – not what content you view while
you’re there. It also means that the site is exactly
what the address bar says it is. The content at
https://linuxformat.com is created by us here at Linux

Format – there’s no man-in-the-middle injecting
malware into the HTML headers or siphoning off the
credit card details of our users. In addition to the tiny
padlock and three letter abbreviations, you’ll note that
the address starts with HTTPS rather than HTTP. The S
stands for secure.

On the internet, there’s a chain of trust that begins
with a root certificate provider, continues through
resellers and ends up with you – the server admin
and end user. From the certificate provider downwards,
everyone in the chain needs to prove that they are who
they say they are, and that a site is not masquerading
as another completely different site.

That kind of reassurance is good to have, especially
when connecting to your own private content on your
own virtual private server. You may not have anything to
hide, but you probably don’t want anyone else looking
at it anyway.

If you’ve ever bought a hosting package, you may
have noticed among the available extras there’s the
option to pay extra for SSL. Namecheap, for instance,
charges oddly specific amounts of between £7.23 per
year and £114.86 per year for the privilege of having
the little padlock, and the peace of mind which goes
along with it.

Thankfully, as owner and admin of your very own
Virtual Private Server, you can provision your various
sites with as many security certificates as you desire –
at zero cost! The certificate provider we’ll be using is
Let’s Encrypt and the tool is called Certbot. Like all good
Linux programs it does one thing and does it very well.

Last issue we went into depth on
selecting and standing up a bare VPS
running Ubuntu Server (https://bit.ly/
lxf281lxfserver).

If you missed it go back and catch up,
else on a fresh install get Apache up and
running this way. Ssh in as root, eg.
 root@XXX.YUR.IPX.HRE to your new
server. Create a new, non-root user with
its own home directory skeleton using
the useradd command:
useradd -m <anew_username>

followed by a new password for your new
user using the passwd command:
passwd <anew_username>

Grant your new user sudo powers so
you can actually get things done by
typing the following:
 usermod -a -G sudo <anew_username>

After this you should log out as root
and log back in as your new user. Update
and upgrade the already installed
packages using sudo apt update and
 sudo apt upgrade commands and start

adding packages which will make your
VPS journey possible. As a bare
minimum, you should have server
software such as Apache or Nginx (we’re
sticking with the former). You’ll also need
PHP and a database such as MariaDB.

You can install Apache by typing sudo
apt install apache2 , PHP by typing sudo
apt install php , and MariaDB by typing
 sudo apt install mariadb-server then
 sudo mysqlsecureinstallation and
following the prompts. See, super easy!

Remember that
a Virtual Private
Server is just
that - virtual.
If you mess up
to the extent
that you need
to wipe it and
start again, you
haven’t lost
a lot. Treat it
as a learning
experience.

TUTORIALS The LXF Server

66     LXF282 November 2021 www.linuxformat.com

Foundation can send its monthly newsletter to your
inbox, but don’t feel pressured to say yes.

The last thing you need to do is to choose whether to
have certbot modify your .conf files so that HTTP traffic
is automagically redirected to the more secure HTTPS.
After all that effort, it would be a shame not to.

And that’s it. Certificates last for a maximum of three
months, but certbot, like the good little bot it is, will
renew them for you without intervention.

D is for Database
Setting up a VPS is all about choice, and nowhere is
that choice more evident than with the availability of
databases you can deploy.

Why do you need a database at all, we hear you ask!
The answer is that the services you will be creating on
your VPS are going to creating and retrieving vast
quantities of data, and they need to store it efficiently.

A web-facing jukebox, as a simple example, would
need to know the whereabouts of every track on every
album, plus the cover art in three different sizes. It
needs to be able to show you the release date, band
members, bitrate and duration of the media. It needs to
be able to present all of that to you without diving into
the ID3 tags for every track every time you refresh the
page, which would slow things down massively.

Databases help with this by keeping the data neatly
structured and instantly accessible to whichever
program needs them. If you’ve not used databases
before, the names can be baffling. Who, exactly, is
Maria? Does Postgres have something to do with
vibrant modern art? Wasn’t Mongo the standby
drummer in a knock-off Beatles cover band? No-one
knows, or more accurately, cares.

Ideally every self-hosted service you install should
be able to use your database of choice to safely store
its own data, without being able to access or alter any
of the data put there by other programs. Jellyfin, for
instance, shouldn’t be able to access details about your
Jitsi call logs or check out the private photos in your
Photoprism instance.

Occasionally, the self-hosted software you plan on
running will recommend that a particular database be
used, and sometimes that will be a hard requirement.
Among the most commonly employed are MariaDB/
MySQL, Mongo and Postgres. They all work differently,
and there are valid reasons for software developers to
favour one over another.

Databases fall into one of two categories: relational
databases and non-relational databases. MySQL,
MariaDB and PostgreSQL fall into the first category ,

First of all you need to add the certbot repository:
sudo add-apt-repository ppa:certbot/certbot

then sudo apt update and then install certbot and
dependencies by inputting:
sudo apt-get install python3-certbot-apache

While it’s tempting to just:
sudo apt install certbot

don’t do this. Yes, certbot will install, but it won’t
know how to interact with your server, and you’ll
be embarrassed when you have to re-consult this
section to do it properly.

A dead cert
Congrats. Certbot is now installed on your system and
ready to get to work! For this next part, we’re going to
assume that have a website on your server with a
domain or subdomain tied to it, such as test.lxfby, and
that you’ve created and activated an Apache .conf file
with the correct configuration.

It doesn’t matter what the site is, so long as it has at
least one page, and is accessible from the internet. The
default Apache page will do fine. Running:
 sudo certbot --apache -d yourspankynewdomain.com

results in certbot showing you a list of domain names
for which you have active .conf files. At this point, it’s
likely that you only have one of them, so it will be a very
short list.

Type in the number of the domain name you want a
certificate for and hit Enter. After checking that the site
actually exists, and it is on the same VPS running
certbot, the certificate authority Let’s Encrypt will issue
a certificate and an encryption key which certbot will
store on your system. Certbot will pester you to add
your email address so that the Electronic Frontier

Certbot can
be used to
create wildcard
certificates
which will
cover any new
subdomain you
create. This
saves time and
can improve
security through
obscurity, but
comes with its
own set of risks.

 DIFFERENT STROKES
Thousands of people host their own
servers, either at home or on a VPS, and
their reasons for doing so vary from the
need to have everything completely
under their own control to trying to push
the tech giants out of their life altogether.

Their setups will vary as much as their
reasons for having them! We’ve gone
with an Ubuntu server install for the

Linux Format VPS, purely because it’s
the most common option, and there is
a tonne of support out there for Ubuntu.
Likewise, we’re using Apache for our
proxy server and MariaDB for our main
database. You don’t need to follow us
exactly. You should have fun with your
VPS and configure it in the way that
makes the most sense to you.

Want to run the latest Arch build? Go
for it. Prefer Nginx, and to eschew
databases altogether because you have a
better idea? That’s entirely up to you. It’s
all about customisation and building your
own ideal machine. If you really, really
want to, you can even deploy a licensed
copy of Windows Server 2019 on your
VPS. You shouldn’t though.

Using certbot to
get the certificate

and keys which
make your VPS-

based site secure is
super-simple.

The LXF Server TUTORIALS

November 2021 LXF282     67www.techradar.com/pro/linux

while MongoDB is in the second. A
relational database stores data in
tables containing specific pieces
and types of data. For example, a
photo gallery could store details of
pictures filenames and paths in one
table and details such as GPS
coordinates, camera type, exposure
and so on in another. This form of
data storage is called structured
data.

A non-relational database is
different in that it stores its data in
a non-tabular form. Instead, non-
relational databases tend be based
on data structures like documents,
which can be highly detailed while
containing a range of different types
of information in different formats.

On your VPS, you’ll probably want one of each type.
For applications which require database software, we’ll
talk you through setting up users and tables as and
when we come to it.

Docking around
Of course, life would be a lot easier if developers simply
packaged everything you would ever need to use their
programs into one neat file or command which would
set itself up with a minimum of input from you, and
include ready-to-roll preconfigured databases, default
logins and all dependencies.

Fortunately, such technology already exists, and in
the world of self-hosted software, Docker is where it’s at.
With a single command, Docker can pull an application,
its dependencies, libraries and configuration files from
Docker Hub, and have them running in a virtualised
container accessible through a virtual port on your
Virtual Private Server in minutes. It’s that simple.

The Docker application itself is super-easy to install
from the default Ubuntu repositories with:
sudo apt install docker.io

Docker should be run when your VPS starts up. To do
this you need to:
sudo systemctl start docker

and then:
sudo systemctl enable docker

As an example of how incredibly simple it is to get
something up and running with Docker, try typing this
into your terminal:
docker run -p 9925:80 -v pwd:'/app/data/’ hkotel/
mealie:latest

All done? Provided you don’t have any errors (you
shouldn’t), you’ll find that if you navigate to port 9925
on your VPS (such as VPS.IP.ADDRESS:9925), there
will be an instance of Mealie – a fully self-hosted recipe
manager – waiting for you. All set up and ready for the
default admin user name and password! You didn’t need
to set up the database: you didn’t need to worry about
initial authentication. It’s a one-line wonder!

But pulling or running Docker images one at a time
can be a chore – especially if your VPS is running
multiple services. That’s time that could be better spent

scouring the internet for more self-hosted projects to
make your life both easier and more complicated.

That’s where Docker Compose comes in. It enables
you to create a text file which will run and manage
multiple containers at once. With it, you can set
persistent volumes, choose which version of the
software you want to run, and get more involved
in the configuration of your services.

To install Docker-Compose, first install Docker
as above and then:
sudo apt install docker-compose

Boom! Done
The Docker Compose file is called docker-compose.
yml, and is written in YAML, which stands for YAML Ain’t
Markup Language. That’s because in the early 2000s, if
your project didn’t employ counter-intuitive recursive
backronyms, it was considered uncool, or possibly
even LAME.

To edit your compose file use nano docker-compose.
You’ll notice it’s completely empty, and waiting for you
to fill it with the details of whatever project takes your
fancy. On the project page of Mealie, https://hay-kot.
github.io/mealie, you’ll see two sample docker
compose files: one using SQLite, and one using
Postgres. Make your selection, then copy and paste the
contents into docker-compose.yml. Save the file
(Ctrl+O if you’re using nano), then from your home
directory do:
 docker-compose pull

This will pull the relevant images onto your VPS, and
 docker-compose up -d will start them as containerised
applications in the background.

The beauty of docker-compose.yml is that more and
more services can be appended to it. Fancy trying out
the Photoprism gallery app? Simply get the contents of
the default docker-compose file from the project page,
and stick it into your own. You can download, launch and
manage dozens of applications this way. Hundreds!
Thousands (steady now!–Ed), even!

Do remember, though, that you only have limited
storage space on your server, so don’t get too carried
away until you really know what you’re doing.

 LET US SERVE YOU PRIVATELY… Subscribe now at http://bit.ly/LinuxFormat

Seven per cent
off may seem like
a great deal for
SSL certs from
namecheap, but
less so when you
can use certbot to
help you get a free
certificate from
Let’s Encrypt.

