
94 Linux Format March 2008

Tutorial Game

Last month Part three: revise in style with your very own flashcard application.

Code Project: ball

Code Project Learn new skills by
building practical mini-programs

PART 4 In the final tutorial of this series, Mike Saunders takes a lighter look at
coding with a simple but addictive game...

 print “String passed: “, somestring

saystuff(“Wowzers”)

If you’re new to Python, make sure that you have the language

installed (most distros install it by default, but otherwise it will be

available in your distro’s package manager). Enter the above code

into a text editor and save it as test.py in your home directory.

Then fire up a terminal and enter:

python test.py

All being well, Python will interpret the code and spit out a line of

text. Our sample program here merely sets up a subroutine called

saystuff, which prints whatever text string is passed to it. You can

see that the code of the subroutine is indented with a tab.

Execution proper begins with the first call to saystuff, which

passes the string Wowzers to be printed. It’s as easy as that –

you’re almost ready to get coding.

But one last thing: you’ll also need the Pygame modules for

this tutorial. Pygame provides an extra layer on top of Python,

linking with SDL and letting you display images and output sound

effects in your programs. It’s very widely available and will almost

certainly be available in your distro’s repositories, but otherwise

see the Development section of our DVD. (If you followed last

month’s code project, you’ll already have PyGame installed!)

Circular capers
Although game genres vary enormously, in terms of the

underlying mechanics, most games involving sprites (image

objects) moving around follow a similar code path:

1 Set up the screen, graphics, score counters etc.

2 Start loop to finish when player quits/dies.

3 Draw graphic objects on screen.

4 Get input from user (eg keyboard or mouse).

5 Check game logic (eg player hit enemy?)

6 Update graphic objects accordingly.

7 Go back to 3.

Now, we’re going to write a little game that has several balls

bouncing around the screen, and the player’s objective is to avoid

colliding the mouse pointer with them. Sounds easy? Well, if we

add some randomness to the ball movements – ie they don’t

always move at the same speed – then it suddenly becomes a lot

trickier. You can’t just hold the mouse pointer in the bottom-left of

the screen, say, because a ball could zoom down there at any

moment. Throughout this, a counter keeps track of how many

seconds you stay ‘alive’. It’s a very basic concept, but it demands

good mouse dexterity and a laser-like focus on the screen.

But first things first: let’s work out how to get a single ball

bouncing around the screen. How does the ball know when to

reverse direction? Fortunately, there’s a very easy method to

O
ver the last three issues we’ve put our programming

fingers to good use with an IRC bot, a sysadmin tool and

a flash card program – all fairly serious stuff: so let’s have

some fun with a game in this final project. Now, most modern

games take thousands of man-hours to create, not to mention

an army of artists and musicians, but there’s still some scope for

solitary hacker to write something entertaining. After all, it didn’t

take a team of 500 coders and a Hollywood movie-set budget to

create Tetris – Alexey Pajitnov managed pretty well on his own

(until various filthy capitalist running-dogs of the West ran off with

his idea, of course…) As with last month’s project, we’re going

to use Python and PyGame as the foundations for our program.

incidentally, there are three Pygame implementations of Tetris:

see www.pygame.org/tags/tetris for more.

If this is the first issue of LXF you’ve picked up – and you’ve

never written a line of Python code before – you’ll be pleasantly

surprised by how easy it is to understand; Python code is

famous throughout the programming world for being very much

self-explanatory. Or if you’re familiar with other programming

languages such as C or PHP, you’ll applaud Python’s simplicity. For

instance, code blocks are marked by indentation rather than curly

braces – see this program:

def saystuff(somestring):

Mike Saunders

recently found a
copy of ZEUS for
the ZX Spectrum
and has been
beavering away
with Z80 assembly
language. http://
mikeos.berlios.de

Our
expert

LXF103.tut_project Sec2:94 21/1/08 12:57:12

Game Tutorial

March 2008 Linux Format 95

If you missed last issue: Call 0870 837 4773 or +44 1858 438795.

 game!
achieve this: we have two variables that we use to alter the ball

movement. For each loop of the game engine, we add these

numbers to the ball’s position. If the ball is moving right, for

instance, then it’s because we’re adding 1 to its horizontal position

each loop. If the ball hits the right edge of the screen, we start

adding -1 to its horizontal position, thereby moving it to the left.

Makes sense? If you’re unsure how this works, here’s a Python

program to demonstrate it in action. You can find this code in the

Magazine/CodeProject section of the DVD as ball1.py. To run

this program, you’ll also need an image called ball.png alongside

the code, which is a 32x32 pixel image containing a white (filled)

circle on a black background. It’s on the DVD, or you can make it

in seconds via Gimp – create a new 32x32 pixel image, fill it with

black, use the circle select tool to create a new circle selection

and fill that with white. Save it as ball.png in the same directory as

ball1.py and run it by entering python ball1.py.

from pygame import * # Use PyGame’s functionality!

ballpic = image.load(‘ball.png’)

done = False

ballx = 0 # Ball position variables

bally = 0

ballxmove = 1

ballymove = 1

init() # Start PyGame

screen = display.set_mode((640, 480)) # Give us a nice window

display.set_caption(‘Ball game’) # And set its title

while done == False:

 screen.fill(0) # Fill the screen with black (colour 0)

 screen.blit(ballpic, (ballx, bally)) # Draw ball

 display.update()

 time.delay(1) # Slow it down!

 ballx = ballx + ballxmove # Update ball position

 bally = bally + ballymove

 if ballx > 600: # Ball reached screen edges?

 ballxmove = -1

 if ballx < 0:

 ballxmove = 1

 if bally > 440:

 ballymove = -1

 if bally < 0:

 ballymove = 1

 for e in event.get(): # Check for ESC pressed

 if e.type == KEYUP:

 if e.key == K_ESCAPE:

 done = True

Let’s step through this. In the first line, we tell Python that we

want to use routines from the PyGame library. Then we load the

ball image we created before and store it in an object called

ballpic, and create a true/false variable to determine when the

game has finished.

The following four lines are hugely important: these declare

variables which control the position and movement of the ball.

ballx and bally store the location (in pixels) of the ball in our game

window – 0,0 being the top-left, and 640,480 being the bottom-

right pixel. ballxmove and ballymove store the numbers we add

to the ball for each game loop; we set them to 1 initially, so that

when the game starts, 1 is added to ballx and bally each loop,

thereby moving the ball down and to the right. So, our ball starts in

the top-left of the screen, and starts moving diagonally down-right

when the program starts.

Next, we set up a new Pygame window and start the main

game loop, filling (clearing) the screen with black and drawing our

ball at its current position (code comments are denoted with #

characters). The following code chunk determines how the ball is

going to move:

 ballx = ballx + ballxmove

 bally = bally + ballymove

 if ballx > 600:

 ballxmove = -1

 if ballx < 0:

 ballxmove = 1

 if bally > 440:

 ballymove = -1

 if bally < 0:

 ballymove = 1

 Our prototype ball-bouncing program – not much to look at yet, but seeing this on

your screen will indicate that you’ve got the basics working.

LXF103.tut_project Sec2:95 21/1/08 12:57:15

96 Linux Format March 2008

Tutorial Game

 screen.fill(0)

 for count in range(numballs):

 screen.blit(ballpic, (balls[count][‘x’], balls[count][‘y’]))

 display.update()

 time.delay(delay)

 for count in range(numballs):

 balls[count][‘x’] = balls[count][‘x’] + balls[count][‘xmove’]

 balls[count][‘y’] = balls[count][‘y’] + balls[count][‘ymove’]

 for count in range(numballs):

 if balls[count][‘x’] > 620:

 balls[count][‘xmove’] = random.randint(-2, 0)

 if balls[count][‘x’] < -10:

 balls[count][‘xmove’] = random.randint(0, 2)

 if balls[count][‘y’] > 470:

 balls[count][‘ymove’] = random.randint(-2, 0)

 if balls[count][‘y’] < -10:

 balls[count][‘ymove’] = random.randint(0, 2)

 for e in event.get():

 if e.type == KEYUP:

 if e.key == K_ESCAPE:

 done = True

 if screen.get_at((mouse.get_pos())) == (255, 255, 255, 255):

 done = True

print “You lasted for”, time.get_ticks()/1000, “seconds!”

The general concepts behind this code are the same as before, but

there’s lots of new juicy code to explore. Near the top, where we

load our ball image, we also set its colorkey to (0,0,0)’ which is

the RGB (Red/Green/Blue) value for black. What we’re saying

here is: set all black pixels in our ball picture to be transparent.

This is important when we have many balls bouncing around, as

we want them to overlap gracefully, and not have unsightly black

In the first two lines, we update the ball’s horizontal (x) and

vertical (y) position by adding the two movement variables. If

ballxmove and ballymove are 1, then the ball will move 1 pixel

right and 1 pixel down each game loop. But then the following if

statements check to see if the ball is near the edge of the screen,

and if so, change ballxmove and ballymove accordingly. If, for

instance, the ball position is over 600 pixels horizontally, then it

should ‘bounce’ off and start moving left – so we start adding -1 to

its position (effectively subtracting 1).

With just a few lines of code, we’ve managed to create the

impression that the ball is bouncing around the screen – not bad!

The final lines of this program set up a keyboard handler, so that

you can quit the game by pressing the Esc key at any moment.

Ball game 2.0
All good and well so far – we have our basic game structure in

place. Now we want to add more balls, and also detect if the

mouse pointer is colliding with any of them. For the former, we’re

going to set up an array of ‘dictionary’ entries to keep track of the

balls. This gives us a huge amount of flexibility: we can have as

many balls as we want, instead of limiting ourselves to ball0, ball1,

ball2 etc. Dictionaries are a doddle in Python:

mydict = {‘Bach’: 100, ‘Handel’: 75, ‘Vivaldi’: 90}

print mydict[‘Vivaldi’]

Here, we associate three words with numbers, and then print out

the value contained in ‘Vivaldi’, which is 90. We’ll use a dictionary

to store the X, Y, X movement and Y movement values of our balls

– a bit like a struct in C. But whereas C bogs us down in memory

management turmoil, in Python we can create loads of ball

objects without any hassle at all, giving them their own individual

dictionary entries.

The final thing we need to think about is collision detection.

How do we tell when the mouse pointer has collided with a ball?

Logically, it seems sanest to go through the position of every ball

and compare them with the mouse pointer location. But we have a

trick up our sleeve: the balls are white, and the background is

black, so why not just detect when the mouse pointer is over a

white pixel? That only takes one line of code, and is very fast...

Here’s the code, which you can find as ball2.py in the

Magazine/CodeProject section of the DVD, along with the ball.

png picture we created earlier (it’s exactly the same).

from pygame import *

import random

ballpic = image.load(‘ball.png’)

ballpic.set_colorkey((0,0,0))

numballs = 10

delay = 5

done = False

balls = []

for count in range(numballs):

 balls.append(dict)

 balls[count] = {‘x’: 0, ‘y’: 0, ‘xmove’: random.randint(1, 2),

‘ymove’: random.randint(1, 2)}

init()

screen = display.set_mode((640, 480))

display.set_caption(‘Ball game’)

event.set_grab(1)

while done == False:

Having problems

with your PyGame

project? Keep

track of variables

by printing them

out to the terminal

with a simple

print statement.

For instance, if

something weird is

happening with the

ball movement in

our game, you can

easily find out what’s

wrong by printing

out the xmove or

ymove variables

– put a print

<variable name>

in the main game

loop and you can

watch it change in

the terminal window

when running the

game.

Quick
tip

LXF103.tut_project Sec2:96 21/1/08 12:57:16

Game Tutorial

March 2008 Linux Format 97

 This is more like it! Multiple circle mayhem demands lightning reactions and pixel-

perfect accuracy with the mouse pointer...

corners drawn on other balls. So, only the white pixels of our balls

will be displayed.

The following numballs and delay variables affect the difficulty

of the game. As you’d expect, numballs controls the number of

balls in play, whereas delay is the time (in milliseconds) that the

game should pause each loop. You can leave these as-is for now –

but if you fancy more of a challenge, you can up the number of

balls and reduce the delay.

Our balls = [] line sets up a new array of ball objects, and in

typical Python fashion, we’re not limited to the number of objects

(nor do we have to define the number straight away). The

for count in range(numballs):

line sets up a loop which runs numball (10) times, adding new

dictionary objects to the balls array and giving them starting

values – top-left of screen, and random movement down-right.

The 1, 2 in the random number generator means ‘any number

between 1 and 2 (inclusive)’. So we have 10 balls, all starting off

with random speeds.

Next, we set up the screen as before, and add an event.set_

grab(1) line which constrains the mouse pointer in the game

window; it’d be too easy if you could move the mouse pointer

outside! Then we have our main game loop. As before, we fill the

screen with black, and then use another for loop to display (blit)

all our balls to the screen.

After updating the screen and delaying (so that it runs at the

same speed on all machines), we again traverse through our array

of balls, updating their positions with our movement variables.

Each ball has its own copy of xmove and ymove in its dictionary

entry, so they can all move independently. Following this is the

game logic, which determines if the balls have reached the window

edges. This time, we’ve tweaked the values so that the balls can go

slightly off-screen (remember, they’re 32x32 pixels). This is vital

for the gameplay: it means you can’t just move the mouse cursor

into a corner and never get hit! The balls now reach every part of

the screen, so you have to keep moving the mouse.

The final three lines of code are new: screen.get_at() returns

the pixel colour value at the specified position, which we set as the

Next month Try your hand at building an rsync server to save bandwidth.

mouse pointer with mouse.get_pos(). We say: ‘if the pixel colour

at the mouse position is white (255,255,255), then done = True

so the while main game loop will end.

Finally, we print the number of seconds for which the player

survived – time.get_ticks() returns it in milliseconds, so we

divide it by 1000 before displaying it.

Finishing up
Not bad for 55 lines of code, is it? As mentioned before, you can

increase the difficulty of the game by raising the value of

numballs at the top – the default of 10 is tricky enough, but if you

think you’re dextrous enough, try knocking it up to 15 or 20 for

some finger-twistingly frantic gameplay. There are many other

aspects of the game you can fiddle with too, such as altering the

random numbers used in the main game logic (if ball has hit

screen edge) section.

Pygame is chock-full of features to play around with, and, using

a handful of lines of code, you can add sound effects or even a

background music track to the game. www.pygame.org/docs/

has some fantastically in-depth documentation to help users

explore its functionality, along with a reference to all the routines

used in this tutorial. Having programmed in countless languages

and environments, from Amiga Blitz Basic to C#-SDL on Mono/

.NET, I can safely say that Pygame is one of the most blissfully easy

game programming setups around – it’s the perfect way to

concretise any game ideas that are floating around in your head.

Good luck! LXF

That’s the end of this coding project series, but we’ve clubbed

together all our best ideas and printed a special magazine

jam-packed with more programming projects. It’s called Code It!,

it costs £9.99 and it includes two dozen hands-on coding

projects for programmers of all levels. It’s on sale as you read

this, but be quick – it’s going to sell out quickly!

I want pretty pictures!
The final version of our game is hardly a tour de force on the

graphical front, but we can spruce it up a bit by adding a

background image. However, it’s important to remember how

we’re detecting where the balls are – we’re looking for white

pixels. So your background image shouldn’t contain any fully

white (255,255,255 RGB) pixels, otherwise the game will end if

you mouse over them!

Find a picture and resize it to 640x480. If you suspect there are

any white pixels in the image, you can always lower its

brightness in Gimp which will eliminate such problems. Save this

picture alongside ball2.py and call it background.jpg. Now, in

ball2.py, enter the following code beneath the early ballpic.set_

colorkey line:

backdrop = image.load(‘background.jpg’)

So now we have our background picture in memory, ready to

use. But we need to display it on the screen every loop, so

further down in ball2.py, replace the screen.fill(0) line with this:

screen.blit(backdrop, (0,0))

This draws the background image before the balls. Note that if

it’s quite a complex image (eg lots of colours), then this extra

blitting process will slow the game down slightly – but you can

tweak the ball speeds and delay variable to compensate for that.

Take it further!

LXF103.tut_project Sec2:97 21/1/08 12:57:18

