
Tutorial SSH

96 LXF127 January 2010 www.linuxformat.com

SSH: Get access a

Hardcore Linux Challenge yourself
with advanced projects for power users

Our man on holiday Ben Martin tunnels SSH traffic over HTTP to get
around over zealous packet filtering at Wi-Fi access points. And you can too!

M
urphy’s law mandates that bad things happen at
inconvenient times. It’s always when you’re out of
the country for a weekend that an email arrives

informing you that your server needs a little tweak to keep on
ticking. That’s when you discover that the jokers offering Wi-Fi
at your hotel have decided to filter out all internet traffic that
is not destined to port 80 (HTTP) or 443 (HTTPS). After all, if
you’re not just doing vanilla web browsing then it’s gotta be
malicious and/or nefarious activity right?

With such a filtering setup and no preparation, you’re
down to either paying extortionate roaming data charges or
throwing away hours tracking down an internet cafe just to
have that five-minute SSH session you so desperately need.

This tutorial is all about how to tunnel your SSH traffic
over port 443 (HTTPS). The ‘security conscious’ hotel
operator will only see HTTPS traffic, and you will be able to
have your SSH session without having to pay your telco a
pound of flesh or leave your hotel room. Your holiday
memories don’t need to include lugging your laptop through
the streets in hour-long searches for an internet tap that flows
with the sweet port 22.

To make things a little easier to explain, I’ll assume we’re
trying to connect to a server in your home. You’ll need to have
Apache installed on the server and access to its configuration
files. A cheap web hosting site might not give you enough
access to set up the proxy described in the article.

Last month We cleaned up the web with the Privoxy proxy server.

 While VPNs have made their way into NetworkManager
and you can create them easily, if the hotel filters out that
sort of network traffic you are out in the cold.

If you’re really game, the setup described in the article can
bounce you through many HTTP proxies on the way to your
SSH server. Sometimes this is actually required, if the internet
connection on offer forces you to go through a web proxy
(ProxA) then you’ll have to first connect to ProxA and then to
the web proxy on your home server before finally connecting
to the SSH server. Three or more proxies along the way is
generally a party trick though, but it can be done!

How it fits together
The information flow for a connection to an SSH server
running on a home network firewall machine (PServer) is
shown in the diagram (above-right). The client machine could
be your laptop. The box in the top-left is the internet
connection zone. If the provider of your internet connection
forces you to use a web proxy, any traffic wishing to make it to
the internet must go through the web proxy server, and
consequently any attempt to directly connect to the home
SSH server will be dropped before they even hit the internet.

It might be that the web proxy server machine in the
diagram is not part of the internet connection being used but
that the router connecting the client to the internet simply
drops traffic that is not destined to HTTP(S) ports. Once the
connection hits your home firewall machine, PServer, it goes
to port 80 or 443 at a given URL. After reading this tutorial
you will have configured this URL to act as a web proxy server

Ben Martin
has been working
on filesystems for
over 10 years. After
completing his
PhD he now offers
consulting services
around libferris,
filesystems and
search solutions.

Our
expert

LXF127.tut_adv 96 24/11/09 10:07:47 am

SSH Tutorial

www.tuxradar.com January 2010 LXF127 97

 Tutorial code

 How we’ll be
connecting to our
home machine
via our Apache
proxy server.

Internet connection zone

Client

PServer

Inside PServer

Apache proxy server (port 443)

SSH server (port X)

Web proxy
server

Internet

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

s anywhere

Once you can
tunnel your SSH
connection,
remember that it’s
easy to use SSH
port forwarding
to get at other
services over the
same restricted
Wi-Fi network.

Quick
tip

in very specialised conditions and forward the connection to
whatever port you are running the SSH server on. A side
effect of the setup is that if you are already running a web
server that’s exposed to the internet you do not have to open
any additional ports in order to connect to your SSH server.

When you’re playing around with this stuff you might like
to use virtual machines to test that the setup, including with
multiple intermediate proxies, is working as you expect. For a
two-proxy server setup you’ll need at least three virtual
machines – two for the proxies and one for the PServer
server machine (assuming that you are using your desktop
machine as a substitute for the client). Using virtual machines
like this also enables you to test the setup before you expose
your setup to internet connections. To be more concise I’ll call
the PServer virtual machine vserver, and the two proxy virtual
machines vproxy1 and vproxy2. (The naming is derived from
them being virtual machine installations with a ‘v’ because
they are virtual hosts.) Once the setup is working with the
vserver virtual machine, the Apache configuration can be
transferred on to the real PServer machine and the virtual
machines are no longer needed. As vserver is a virtual
machine version of the real PServer you can think of these
two machines as filling the same role throughout the tutorial.
The only difference is that vserver is a virtual PServer used for
testing the configuration before going live.

Apache setup
The first setup will have an SSH server running on vserver on
port 10,000 and will allow connections through an Apache
server on vserver. The first round will not use any
intermediate proxy server, but connect directly to the Apache
proxy on vserver. Then two web proxy servers will be
introduced between the SSH client and the Apache server.

The Apache setup takes advantage of the mod_proxy
Apache modules. By default on a Fedora Linux Apache install
these modules are already loaded for you. You will have to
have such modules as mod_proxy_connect loaded in order
for the configuration file to be useful. The configuration
shown in /etc//httpd/conf.d/sshproxy.conf (Listing 1) can

be placed entirely in a new file in the /etc/httpd/conf.d
directory. The allowCONNECT directive is used to limit which
ports can potentially be connected to through the Apache
proxy. ProxyRequests turns on forward HTTP proxying and
the rest of the configuration file is used to allow only proxying
connections to localhost:10000 and nothing else. With
forward HTTP proxying, Apache will appear as another HTTP
proxy server when we are trying to connect to the SSH server.
Originally I tried using two Proxy directives for access control.
The documentation for the Apache Order Directive would
lead one to interpret the configuration shown in apache-bad-
acl (Listing 2) as allowing access to only localhost:10000.
First the deny is tested, and because a deny and an allow
both match, the request is allowed. If you try this
configuration it might work for you… for a while. The ordering
of the Proxy directives in the Apache configuration file will
alter if the localhost:10000 access is allowed or denied. This
order dependence goes against what is documented for the
Apache order directive. This sort of random behaviour is
obviously not desired.

With only one Proxy directive, the configuration in/etc/
httpd/conf.d/sshproxy.conf can’t change when other parts
of the Apache configuration are modified. The regular
expression will deny anything that does not match the look
ahead, so anything not connecting to localhost:10000 will

Resources
 Apache mod_proxy

http://httpd.apache.org/docs/2.2/mod/mod_proxy.
html

 Apache Order Directive
http://httpd.apache.org/docs/2.2/mod/mod_authz_
host.html#order

 Tunneling SSH over HTTP(S)
http://dag.wieers.com/howto/ssh-http-tunneling

 ssh-https-tunnel
http://zwitterion.org/software/ssh-https-tunnel

LXF127.tut_adv 97 24/11/09 10:07:48 am

Tutorial SSH

98 LXF127 January 2010 www.linuxformat.com

 Unlock your SSH identity files when you unlock your KDE
desktop using KWallet.

Never miss another issue Subscribe to the #1 source for Linux on p66.

Don’t forget about
the SSH agent,
having to type your
SSH passphrase
all the time can
lead to less secure,
shorter choices.
Use the SSH agent
to unlock your
SSH key when you
unlock your laptop
session.

Quick
tip

be denied. As we are going to have SSH on port 10,000, it is
then up to the client to be able to properly authenticate with
SSH in order to get a connection. No other proxying is
allowed by Apache.

An Apache web server set up to allow connections to an
SSH server running on a user-defined port on localhost like
this should have similar security implications to opening the
user selected ssh server port to direct internet traffic. There is
no extra filtering of attempts to connect to the SSH server
port being done by Apache. Here’s how we allow Apache to
proxy SSH connections:
Listing 1

/etc//httpd/conf.d/sshproxy.conf

Config to allow ssh tunnelling via http.

 AllowCONNECT 10000

 ProxyRequests on

 <ProxyMatch ^(?!localhost:10000$)>

 Deny from all

 </ProxyMatch>

… and here’s a really bad example of an access control
specification that shows you what not to do:
Listing 2

BAD configuration, EXAMPLE ONLY

 <Proxy *>

 Order deny,allow

 Deny from all

 </proxy>

 <Proxy localhost:10000>

 Order deny,allow

 Allow from all

 </Proxy>

SSH setup
Use the ProxyCommand directive to set up the SSH client to
use HTTP proxies. It is convenient to set up many Hosts in
~/.ssh/config to allow easy use of proxies. Introducing many
Host directives for the same server enables you to connect to
the same server using different proxy options from the
command line. For example, you might connect to the host
with DNS name pserver.example.com using the hostname
pserver. Connecting with this name might attempt a direct
connection to the SSH daemon on pserver.example.com. If
you feed the pserver-http destination hostname to SSH you
can indicate that you want a connection to pserver.example.
com but that SSH should use the current HTTP proxy when
connecting. I use the -hd (HTTP direct) to connect using the
Apache web server as the only proxy server. The hd
hostname is useful for both verifying that the Apache web
server configuration is working as expected and when you

want to connect via the Apache web server but your internet
provider does not require any other HTTP proxy servers.

The TCPKeepAlive and ServerAliveInterval options are
used to keep traffic on the link so that the proxies do not think
the connection has stalled and close it. If you are connecting
over a link such as through a mobile data service you might
want to turn off keepalive messages to save on data traffic.

There are many commands available that can be used
with the SSH ProxyCommand directive; we’re about to look
at using connect-proxy and a custom Python script for
ProxyCommand.

It comes in handy to have a single configuration section
for a host in your ~/.ssh/config file specifying the port, DNS
hostname, identity file and other options, leaving only the
ProxyCommand to be defined for each specific connection
style. The top half of ~/ssh/config-header (Listing 3) shows
the template with the lower half defining two connection
styles that can be used with both vserver and pserver.
example.com. Using the command ssh vserver-chd will
connect to the machine with the DNS name vserver through
the apache web server running on vserver. I use the c prefix to
indicate that I’m connecting using the connect-proxy
command and no prefix for the http-proxy-tunnel.py script.
The postfix defines how I want to connect: d for direct; hd for
direct using only the Apache HTTP proxy on the server itself;
http for connection over an intermediate HTTP proxy to the
Apache HTTP proxy and finally to the SSH server; and https
for the same but using HTTPS instead of HTTP for the
intermediate proxies.

Specifying the hostname as vserver-chd on the
command line will cause SSH to use connect-proxy to
connect to the HTTP proxy server on vserver and request a
connection to the port that SSH is using on the same
machine that’s running the Apache server. Because the
configuration of Apache shown earlier in/etc/httpd/conf.d/
sshproxy.conf allows connections to the SSH port on
localhost this final link should be allowed.

Here are some aliases and ProxyCommand settings for
~/.ssh/config
/ssh/config-header

Port: not just good with Stilton
The internet uses ports to allow a
machine to provide multiple services.
Common services such as web traffic
and SSH connections have fixed ports
so that client machines can select
which service they want from the many
that may be offered by a server. A
common network safety tool is to limit

the ports that traffic might be allowed
to flow between. Sometimes network
providers will discard traffic between
ports used by common P2P networks,
or the ports used by VOIP to enforce
network policy. Sometimes port access
is tightened too far, and then you need
to create a tunnel to your final port.

A good final test
is to go to a local
internet cafe and
use Iptables to
block all outgoing
traffic that is not
heading for port 80
or 443. Its best to
know your safety
net works before
you make the final
fall.

Quick
tip

LXF127.tut_adv 98 24/11/09 10:07:49 am

SSH Tutorial

www.tuxradar.com January 2010 LXF127 99

Next month We’ll connect to the cloud with Ubuntu and Amazon’s EC2.

You might also want
to pitch in with
friends to rent a
server in the cloud
so that the entire
group can use SSH
tunnelling through
your server with
minimal cost.

Quick
tip

Host *

 TCPKeepAlive yes

 ServerAliveInterval 10

Host vserver*

 HostName vserver

 User root

 IdentityFile ~/.ssh/root@local-virtual-machine

 Port 10000

Host pserver.example.com*

 HostName pserver.example.com

 User root

 IdentityFile ~/.ssh/root@local-virtual-machine

 Port 10000

Host *-chd

 ProxyCommand connect-proxy -H %h:80 localhost %p

Host *-cd

 ProxyCommand connect-proxy %h %p

With the configuration shown above you can very easily
connect with the SSH server through Apache. The commands
to install the connect-proxy command and start a connection
through the Apache HTTP proxy are shown below:
yum install connect-proxy

ssh vserver-chd

Connecting to the SSH server only through the Apache proxy
The main drawback with the connect-proxy command is

that it allows you to specify only one HTTP proxy server. This
means that you can’t use connect-proxy for SSH when you
have to connect to the internet through a proxy server
because we already need to use the one allowed proxy server
for the Apache server on pserver.example.com.

http-proxy-tunnel.py
The proxy limitation is removed by using http-proxy-tunnel.
py, which allows many intermediate proxies to be used. The
complete http-proxy-tunnel.py is under 300 lines of code
but only fragments are shown here.

The command line arguments for http-proxy-tunnel.py
are a chain of proxies to tunnel through in the form [proto://]
host[:port] where the first proxy may be specified as “.” to
use the http_proxy environment variable. The proto and port
arguments both specify the same thing – which port to
connect to on the given host. The last two parameters in
~/ssh/config-prxtun1 (code included on the LXFDVD) will
have http-proxy-tunnel.py connect to our Apache server on
the HTTP or HTTPS port and then ask to connect to the port
SSH is using on the same machine that’s running the Apache
server. Also included on the disc is the http-proxy-tunnel.py

script that you’ll need to use – see the instructions on the
disc to configure your SSH client to use this.

Now that we have set up Apache on PServer (or vserver)
as above and configured our SSH client to use http-proxy-
tunnel.py we should be able to connect directly with the web
server on PServer (or vserver) using SSH. The command ssh
vserver-hd should generate a connection though Apache.
Running a tcpdump while the above command is issued will
show traffic similar to this:
15:08:59.590325 IP vproxy2.36040 > vserver.http: ...

15:08:59.602934 IP vserver.http > vproxy2.36040: ...

The main point is that there is no traffic to or from the SSH
service in the packet capture.

Connect through intermediate proxies
If you’re testing this using virtual machines for the
intermediate proxy servers you might get a fatal error from
the proxy script of ‘HTTP/1.0 403 Forbidden’. Assuming that
the virtual machines are running on the subnet 192.168.1.x,
adding these two lines to /etc/squid/squid.conf will allow
connections through:
acl localnet src 192.168.1.0/24

http_access allow localnet

With Squid is configured like this the commands shown here:
[root@vproxy2 .ssh]# export http_proxy=http://vproxy1:3128

[root@vproxy2 .ssh]# ssh vserver-http

will cause SSH to connect to the Squid proxy server on
vproxy1, then to the Apache proxy server on vserver and
finally to the SSH server on vserver. Assuming that Apache is
set up on PServer to allow proxying, the ~/.ssh/config file
and identity files used on vproxy2 for this connection can be
directly used on a laptop to connect to the home server
pserver.example.com by changing the http_proxy
environment variable and connecting to the pserver-http
host with SSH.

Shown below is a connection through two user-defined
web proxies and finally to the Apache proxy and SSH server,
though most people will not need to use two intermediate
web proxy servers before hitting their web server.
///[id:two-ud-proxy-serv]///

[root@vproxy2]# vi /etc/squid/squid.conf

... ADD

http_access allow localhost

... SAVE + QUIT

[root@vproxy2]# /etc/init.d/squid restart

[root@vproxy2]# cat /root/.ssh/config

...

Host *-http2proxies

 ProxyCommand http-proxy-tunnel.py . “http://

vproxy1:3128” “http://%h” “localhost:%p”

[root@vproxy2]# ssh vserver-http2proxies

Last login: Mon ... from localhost.localdomain

[root@vserver ~]#

With a little tinkering in your Apache configuration file you
can set up an endpoint to allow SSH traffic to be sent over
intermediate web proxies and arrive on port 80. Having such
a fallback can be a godsend when you really need a
connection but can’t afford the time to find a less restrictive
Wi-Fi hotspot.

Thanks to Russell Stuart for sharing the Python script to
tunnel over multiple web proxies and providing the insight to
get me started using SSH over web proxies. LXF

Breakout
While there are a plethora of VPN solutions around, many
of them use custom protocols and send network packets
which are not used for normal web browsing. If you have a
fancy IPSec VPN setup, you might find that you can’t use
that with your hotel’s Wi-Fi because they do not support
the network traffic required. Tunnelling SSH traffic over
HTTP means that the hotel will only see normal network
traffic from your laptop, so you’re not relying on them
having any in-depth knowledge of networking in order for
you to connect.

LXF127.tut_adv 99 24/11/09 10:07:49 am

