
92 LXF128 February 2010 www.linuxformat.com

Nick Veitch,
as all of his
colleagues will
attest, is possibly
the world’s
greatest living
expert on clutter.
He knows a bit
about Clutter too.

Our
expert

 PyClutter 1.0.0
 Tutorial code

stage are called ‘actors’. It makes more sense when you start
coding it, and the names don’t seem so strange after a while.
The thing about the actors is that they have more properties
than a standard widget because they actually exist in a 3D
environment, rather than a 2D one.

All the world’s a stage
Anyway, enough hyperbabble – it will make more sense
when we write some code. Open up your standard Python
environment (mine is a Bash shell, but you can use some of
those fancy ones if you like), and let’s create our very first
Clutter script…
>>> import clutter

>>> stage = clutter.Stage()

>>> stage.set_size(500,300)

>>> red=clutter.Color(255,0,0,255)

>>> black=clutter.Color(0,0,0,255)

>>> stage.set_color(black)

>>> stage.show_all()

When you’re done, click in the Close gadget on the window
that opened. I know it didn’t do anything amazing, but it does
have the potential to! Let’s take a look at what just happened.
The first line obviously loaded the Clutter module. In turn,
Clutter opens a few more modules itself – back-end stuff that
links into display libraries to be able to put things on the
screen. Next up we created a stage object. the stage is like a
viewport – an area where your actor objects can play.

Setting the attributes is as simple as calling some
methods for the stage class, in this case a size and a colour.
The parameters for the size method are x and y dimensions,

Clutter: Code a s

Python: Real-world coding projects
to expand your hacking skills

Tidying up some code with Clutter, Nick Veitch takes you far from the
command line into a new realm of technicolour graphical possibilities

W
e have built a lot of web-based wonder in our
Python tutorial series so far, but only rarely have
we touched on using a GUI to display stuff

graphically to the user. One of the reasons for this is that, for
the most part, GUI code gets very big very quickly, so the
whole tutorial would be taken up by just drawing a panel and
a few buttons on the screen.

We’re going to take a break from being so user-unfriendly
for a while, as for the next few months we’re going to be
building applications using the PyClutter library. If you don’t
know much about Clutter, check the boxout over the page.
For the first tutorial we’re going to build a small but useful
little utility to get to grips with how Clutter and PyClutter work.
As Clutter has until recently not been that widely used, there
is a dearth of documentation and examples, so hopefully the
code we will cover here will give you an idea of how we can
use it practically within our Python web apps.

Our task this issue is to create an app that will show us the
current network speeds for our internet connection. Yes,
there are plenty of monitors out there, but this will be our
own, and delivered in about 70 lines of simple code.

The first thing you need to get to grips with in Clutter is the
basic terminology. Unlike other GUI toolkits, which usually
define objects like windows or panel, Clutter refers to the
visual area as a ‘stage’. To continue the analogy, objects that
appear on (or actually, in, but it sounds weird to say it) the

Last month We made the web respect our authority with OAuth.

 It’s a bit dark in here… Could be the promising start of a
3D adventure game, perhaps. Or your first Clutter effort!

LXF128.tut_python 92 11/12/09 10:53:52 am

www.tuxradar.com February 2010 LXF128 93

Python Tutorial

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

and the colour is taken from the clutter.Color object (which
takes values for RGB and alpha). As with other GUI toolkits,
we should cause the object to be shown before any of it is
drawn on the screen, which is what the final command does.

But what of our actors, the objects that we want to show
on the screen? Let’s add some text objects:
>>> a=clutter.Text()

>>> a.set_font_name(“Sans 30”)

>>> a.set_colour(red)

>>> a.set_text (“Hello World!”)

>>> a.set_position(130,100)

>>> stage.add(a)

Now we’ve added a text object, our first actor. Hopefully it will
be fairly clear what the methods are doing – picking a font, a
colour, setting the text string and positioning it on the stage.
The final call in the code example adds the actor to the stage,
and until this point, you won’t be able to see it. Now that it’s
there though, you can continue to play around with it - try
setting it to a different position or adding new colours.

As I mentioned earlier, the PyClutter documentation is
scanty, but we can gain some solace in the fact that Python
has good introspection. Try typing in dir (a) at this point to see
the methods and attributes available for this object.

Our next step is to build a running script, but there’s
something we haven’t covered yet: for all the Clutter magic to
work properly, we should turn control of the application over
to the clutter.main() function, but we don’t want to do that
without some way to exit the program. In such situations,
Python will catch Ctrl+C interrupts, so we will have no way of
quitting. The answer is to provide some keyboard events.

When the stage window is active, Clutter will receive
signals for keypresses. All we need to do is provide a callback
function that will process that event, and if the correct key
has been pressed, quit out of the main loop. You could also
assign other actions to some keys, like changing the colour of
the stage for example.
>>> def parseKeyPress(self, event):

 system monitor

... if event.keyval == clutter.keysyms.q:

... clutter.main_quit()

... elif event.keyval == clutter.keysyms.r:

... self.set_color(red)

...

>>> stage.connect(‘key-press-event’, parseKeyPress)

>>> clutter.main()

When run in the interactive Python shell, the quit function will
not quit Python itself, or even destroy the application; it will
just return control to the Python shell. In the case of a running
script though, calling the clutter.main_quit() method will
effectively end the application, or at least the Clutter part of it.

Time to monitor something
Right, now we have the interface sorted out, how are we going
to build an amazing bandwidth monitor? We first need to find
out the speed of the network traffic. Whenever I am
confronted with a question about some piece of system
statistics, I always go and ask my old friend, proc. Yes, the

 Messing around in the interactive shell is a quick, safe
way to finding out about Clutter objects and methods.

 The traditional
first app, though
rather daringly
we have left out
the comma.

A note about versions
The Clutter library, and consequently the Python module that
uses the Clutter library, has been updated recently to version
1.0. Normally updates may cause a few inconsistencies
between old versions and new versions of software, but in this
case there are fundamental differences between the code of
versions before and after 0.9. The PyClutter module and the
Clutter library should be available in your distro’s repository,
but when you install it, make sure you have a version 0.9
(preferably 1.0) or above, otherwise I can guarantee you that
none of the code in this tutorial will work. If you think that’s a
faff, you ought to try writing a tutorial and then discovering
the whole library changes…

LXF128.tut_python 93 11/12/09 10:53:53 am

94 LXF128 February 2010 www.linuxformat.com

Tutorial Python

/proc pseudo filesystem is the repository of everything you
ever needed to know about a running Linux box. proc is a
huge sprawling mess of files, but the one we want is
/proc/net/dev. This lists all the network devices, and reading
the file will give you statistics on bytes in and out, packets,
dropped packets, errors and so on. The only thing we are
interested in are the bytes sent and the bytes received. I know
that the number there is a total, and we wanted a speed, but
behold the power of proc – just open the file again and the
magic numbers will have changed. Now, I hope I am not going
too fast for you, but simple arithmetic should not be beyond
us. If we poll the file every second and subtract the old
number from the new number, everything should be fine.

All we really have to do is build a little function that will
read in the file, parse it for the information we want, and
compute the deltas. Before we leave we will save the old
number so we can subtract it next time. Here’s how the
function should look, more or less:
devfile=open(‘/proc/net/dev’,’r’)

for line in devfile.readlines():

 line=line.strip()

 if (line[:4] == ‘eth0’):

 line=line[5:].split()

 print line[0], line[8]

Hopefully, this will make some sense to you without me
needing to draw diagrams. We read in the file and iterate
through the lines, looking for the one that begins eth0: – it is
necessary to strip the line before searching because the
output is padded by an amount to make the tables line up.
When we have the correct line, we take of the interface part
and split the string up, so we have each of the numbers as part
of a list. The counts for bytes in and out happen to be at the 0
and 8 positions in this list. Here we have just printed them out
– you can type in the code and see what it gives you. All that
needs to be added to that is to convert the strings to integers
and store them so we can keep a track of what’s going on.

Maths is your friend
The more detail-oriented of you might question whether we
take into account the length of time it takes this snippet of
code to run. If you want to time this code, go ahead – on my
development system it takes 0.0001 seconds to run. In case
you’re interested, a complete command line app would look
something like this:
import time

lasttime=1

lastin=0

lastout=0

def getspeed():

 x=open(‘/proc/net/dev’,’r’)

 for line in x.readlines():

 line=line.strip()

 if (line[:4] == ‘eth0’):

 line=line[5:].split()

 bin=int(line[0])

 bout=int(line[8])

 return (bin, bout)

while True :

 z= getspeed()

 timedelta=time.time()-lasttime

 lasttime=time.time()

 sin=(float(z[0]-lastin))/(1024*timedelta)

 sout=(float(z[1]-lastout))/(1024*timedelta)

 print sin, sout

 lastin=z[0]

 lastout=z[1]

 time.sleep(5)

This incorporates a timing function to more accurately
calculate the speeds, but bear in mind that we’re only talking
about a couple of milliseconds, so it doesn’t make a lot of
difference. It is useful however, if we ever want to alter the
timing period elsewhere in the software.

Now what we have to do is to incorporate this functionality
into our Clutter application. We could just stick the loop at the
end of our program and fail to ever call the main Clutter loop.
We can still update the actor objects whenever we like, but
this would be a Bad Thing. The nicer way to do it is to give
liberty, autonomy and freedom back to the actors, but make
use of an animation timeline to control their text.

Timelines are covered in slightly more detail in the box
over the page, but to give you a brief summary, a timeline is
just a timer that counts to some value and then emits the
programmatic equivalent of a beep – a signal. The signal can
be caught and fed to a callback, and as well as itself, you can
supply other parameters to the call. For our purposes, we can
make the timer call a function that will test the network speed
and update our two actors.

The timeline is an object unto itself, but when we execute
the connection between the timeline and the callback
function, we can pass along our text actor objects too, so the
callback function will be able to change them directly. Note
that if you’re going for more complicated behaviours, this

Never miss another issue Subscribe to the #1 source for Linux on p66.

Keeping track of
versions can be
a nightmare, but
most modules
store their
version number in
<modulename>.__
version__ . Not only
is this useful for
you to check, but
your applications
can check for a
compatible version
before they try and
do anything tricky.

Quick
tip

 Numbers. Coloured numbers. That change. And monitor
things. I call this a pretty good start.

Why should I care about Clutter?
Clutter is a GPL graphics and GUI
library that was originally developed by
the OpenedHand team. It was later sold
to Intel, which is committed to further
development and deployment.

The great thing about Clutter is that
it’s a simple, fast and powerful way to
deliver 3D or 2D graphics on a number
of platforms. The back-end is essentially
OpenGL, but by using the Clutter library
developers can take advantage of a fast,

efficient and friendly way to develop
graphically rich apps without messing
around with more technical aspects of
the OpenGL libraries.

Clutter also forms an integral part of
Moblin, the latest attempt to deliver a
lightweight but powerful graphical
version of Linux to run on mobile
devices. Moblin is primarily aimed at
Intel Atom based devices, although it
will run on other hardware.

LXF128.tut_python 94 11/12/09 10:53:53 am

www.tuxradar.com February 2010 LXF128 95

Python Tutorial

doesn’t preclude you from having other timers too – you
could set one up to change the colour of the objects every
second if you wanted, and it needn’t interfere with the
timeline we have already created. Timelines can be used like
threads in a multithreaded app – they aren’t quite as flexible,
but they are easier to manage and they it easier to deal with
animated objects, because you can separate the business of
animating the object from the other interactions it has.
import clutter

import time

lasttime=1

lastbin=0

lastbout=0

black =clutter.Color(0,0,0,255)

red = clutter.Color(255, 0, 0, 255)

green =clutter.Color(0,255,0,255)

blue =clutter.Color(0,0,255,255)

def updatespeed(t, a, b):

 global lasttime, lastbin, lastbout

 f=open(‘/proc/net/dev’,’r’)

 for line in f.readlines():

 line=line.strip()

 if (line[:4] == ‘eth0’):

 line=line[5:].split()

 bin=int(line[0])

 bout=int(line[8])

 timedelta=time.time()-lasttime

 lasttime=time.time()

 speedin=round((bin-lastbin)/(1024*timedelta), 2)

 speedout=round((bout-lastbout)/(1024*timedelta), 2)

 lastbin, lastbout = bin, bout

 a.set_text(str(speedin)+’KB/s’)

 xx, yy=a.get_size()

 a.set_position(int((300-xx)/2),int((100-yy)/2))

 b.set_text(str(speedout)+’KB/s’)

 xx, yy=b.get_size()

 b.set_position(int((300-xx)/2),int((100-yy)/2)+100)

def parseKeyPress(self, event):

 # Parses the keyboard

 #As this is called by the stage object

 if event.keyval == clutter.keysyms.q:

 #if the user pressed “q” quit the test

 clutter.main_quit()

 elif event.keyval == clutter.keysyms.r:

 #if the user pressed “r” make the object red

 self.set_color(red)

 elif event.keyval == clutter.keysyms.g:

 #if the user pressed “g” make the object green

 self.set_color(green)

 elif event.keyval == clutter.keysyms.b:

 #if the user pressed “b” make the object blue

 self.set_color(blue)

 elif event.keyval == clutter.keysyms.Up:

 #up-arrow = make the object black

 self.set_color(black)

 print ‘event processed’, event.keyval

stage = clutter.Stage()

stage.set_size(300,200)

stage.set_color(blue)

stage.connect(‘key-press-event’, parseKeyPress)

intext=clutter.Text()

intext.set_font_name(“Sans 30”)

intext.set_color(green)

stage.add(intext)

outtext=clutter.Text()

outtext.set_font_name(“Sans 30”)

outtext.set_color(red)

stage.add(outtext)

stage.show_all()

t=clutter.Timeline()

t.set_duration(5000)

t.set_loop(True)

t.connect(‘completed’, updatespeed, intext, outtext)

t.start()

clutter.main()

Here we’ve brought together all the elements we have
explored in this tutorial. We have created a stage, populated it
with actors, and then used the timeline objects in Clutter to
make them update themselves at our whim. But so far we
have only scratched the surface of Clutter’s graphical
capabilities. We haven’t even learned about behaviours or
animations yet, never mind the alpha channel effects. Please
trust us that we will be including these in our next project. LXF

Next month We’ll build an animated feed-reader and make it look brilliant.

 The main
clutter website
at www.clutter-
project.org
doesn’t have
much help for
Python users, but
there is lots of
background info
and plenty of C
documentation.

It’s all about timing
The Clutter library uses objects called
timelines to do practically everything
that needs to be done while an
application is running. The timeline is
the heartbeat of your script, and makes
sure that everything at least makes a
good attempt at running together.

Timelines are used extensively for
controlling animations and effects
within Clutter, but you can also use
them as your own interrupts to call
routines every so often. It does this by
emitting signals for events such as
started, next-frame, completed and so
on. Each of these signals can be bound
to a callback function to control
something else.

Here is a short example you can type
into a Python shell:
>>> import clutter

>>> t=clutter.Timeline()

>>> t.set_duration(2000)

>>> t.set_loop(True)

>>> def ping(caller):

... print caller

...

>>> t.connect(‘completed’,ping)

9L

>>> t.start()

>>> <clutter.Timeline object at

0xb779639c (ClutterTimeline at

0x95b9860)>

Hopefully the methods of the timeline
object should be easy to follow. The
duration is set as a number of
milliseconds. The timeline is then set to
loop. Here we have created a simple
function called ping, which just prints
out the parameter it was called with.
next, we connect the completed
emitted signal to the ping function and
start the timeline running. Without any
further interaction, the ping function
will now be called every two seconds, as
the timeline completes, until you kill the
Python shell.

LXF128.tut_python 95 11/12/09 10:53:53 am

