
38     LXF225 July 2017 www.linuxformat.com

Jonni Bidwell meets up with exercism.io creator
Katrina Owen to discuss Linux, languages and the

perennial perils people face when learning to code…

The Exercist

The Exercist

The Exercist

July 2017 LXF225     39www.techradar.com/pro

Katrina Owen
accidentally became a
programmer while
studying molecular
biology. Since then
she’s helped countless
others become
programmers through

her website exercism.io. She’s also an open
source advocate at GitHub and has
co-written (with Sandi Metz) 99 bottles
of OOP, a book that’s dedicated to writing
efficient and beautiful object-oriented
code. We caught up with her at OSCON
Europe back in October 2016 to discuss
painful memories of Gentoo, friendly code-
reviewing robots and what people really
want in a coding tutorial…

Linux Format: Tell me about your history.
Your bio says you have a background in
molecular biology.
Katrina Owen: Well, I was actually a secretary
until I was about 25. It was around then I
realised that there was no real future in
secretarial work: it wasn’t going to get any
better and there wasn’t a whole lot of respect
to be found. So I decided to get a degree, but
I didn’t really know what to get a degree in. I
just needed it to be something real,
something scientific.

At first I didn’t have enough of a maths,
physics or chemistry background to get
accepted to a university. So I spent about
18 months teaching myself those things, sat
some exams and then was suitably qualified.
But I still didn’t really know what to do. The only
criteria for me was that it would lead to some
sort of real job.

I was accepted to two programmes: one was
in aerospace engineering and the other was in
molecular biology. I didn’t really know which to
choose, but I thought, “Well, I’m so new to all of
this mathematics, so probably biology is the
better choice.” I thought I’d probably struggle
with some of the heavier math in the aerospace
program. In retrospect I think that I would’ve
done better at aerospace engineering, because
it was practical and you could resort to first
principles to figure things out. Whereas with
biology it’s like, “It happens because of
evolution” and there’s a lot of theoretical stuff
that’s much more vague: “that’s just the way it
is and you just have to remember it” type of
deal. So that was kind of frustrating.

LXF: How did you get into computers
and programming?
KO: I did the biology thing for three years, but
as I was doing that I got my first computer, put
Linux on it, and learned how to do little scripting
things with Bash. I got really excited about
programming and problem solving, and ended
up doing some freelance work, mostly just

helping friends debug their websites and stuff.
They got excited about how helpful that was, so
I ended up getting quite a lot of work through
friends and eventually found a real job.

LXF: Was this in the halcyon days of early
JavaScript, where every browser had their
own idea of what the language was?
KO: No, this was way back in the DHTML days.
But I didn’t really deal with it, mercifully. I ended
up very quickly getting involved with back-end
PHP-type stuff and not really touching the front-
end stuff at all. After a few years of doing that
I ended up doing Ruby, which was a
very different kind of environment. It felt like
people got together a lot more: conferences
and meet-ups were more common. The Ruby
community has a very whimsical feeling.
They’re very fond of their puns, all of their
project names are very creative.

LXF: I ask this as someone who chose
Python more or less arbitrarily when faced
with having to learn a ‘mainstream’ language.
What made you choose Ruby over Python,
or anything else?
KO: Y’know what? I did consider both. They
both have great communities, they both have a
philosophy around quality and around wanting
to test things and wanting to make things more
delightful for the programmer. When I was
trying to figure out what to do next, when I was
working in PHP all the time and trying to decide
where can I go from here and where I’m going
to feel happier, I was considering both of them
and didn’t really have a way to choose. I didn’t
know much about either, and I just so happened
to meet a whole hoard of Ruby programmers,
and more or less by
accident ended
up doing projects
with them.

LXF: You mentioned
putting Linux on a
laptop. What was
your first Linux
experience?
KO: I believe I started with Debian and then a
couple of years later I switched to Gentoo.

LXF: I once dabbled with Gentoo. It’s sort of
this masochistic chapter that people go
through. Although at the time, 2004-ish,
I guess, the documentation was much better
than that of other distros.
KO: I remember having a lot of trouble
getting wireless working. Actually now I
remember, for the first two years I didn’t bother.
Then I moved to the US [from Norway] and
was at a hotel where there was no Ethernet
and there was something I really needed to
do online. I think it took me a whole day to figure
it out. I still can’t remember what I did.

I remember being amazed that I got it working.
And then every time I went to upgrade I’d be
desperately googling error messages, trying
to figure out the magic incantation. But I found
the whole process weirdly exhilarating – it really
was a lot of fun.

LXF: So your adventures culminated in the
creation of exercism.io. For the benefit of our
readers, can you explain what it is?
KO: The core idea of Exercism goes back to
Language Hunters, which is all about human
languages that are dying out. It’s this kind of
in-person, game, interactive way of saving
languages that are dying. They drew a

distinction between fluency and proficiency,
which I’d always thought were deeply
connected. But it turns out you can have a high
level of fluency and a low level of proficiency, or
vice versa. So you can have a less-advanced
levels of skill, but at that level still be fluent. And
that’s what Exercism targets: this low level of
fluency while still being able to solve tiny little
trivial problems in a programming language.

And to be able to do it with complete ease,
without having to think about how you’re going
to phrase it, or where the braces go, or what the
syntax is. Being able to gain this fluency, at the
low-syntax level, frees up the cognitive
resources that you need to be able to solve
harder problems or do more of the real-world
things. So lots of different people use Exercism

who it’s aimed at

“You can have a high
level of fluency and a
low level of proficiency.”

Interview

The Exercist

40     LXF225 July 2017 www.linuxformat.com

for lots of different reasons. It’s this core idea of
gaining a high level of fluency with only a low
level of proficiency – that’s where Exercism
finds its sweet spot.

LXF: What languages are people learning on
Exercism? How does the site work?
KO: The most popular I think are Ruby, Python,
JavaScript, Haskell and Rust. And lately Elixir
and Elm. Then there are a few niche languages
where you have a few hardcore enthusiasts. We
have a command line client written in Go. That’s
good because it means we can ship our client
without needing any extra runtimes or
dependencies. As long as it’s in your path
somewhere, it’ll run. The client fetches
exercises, then once the student solves them,
with whatever tools they need, the client sends
their solutions back to us. The actual
conversations about the problems happen on
the site, independent of the client.

LXF: I’ve looked around the site and must
ask you about Rikki, the friendly
neighbourhood code review robot…
KO: One of the things that happened, was that
I spent the first two years giving enormous
amounts of feedback. But it tended to be the
same feedback over and over again. So I
realised that there were categories of issues for
every single exercise, there were a handful of
different approaches and fairly typical mistakes
that people would make. So I figured that with a
little bit of back analysis a lot of this could be
automated. That was the first foray, looking at
the syntax tree and seeing if they’d triggered
any of the red flags that I’d coded for. That’s all
Rikki the robot’s doing.

LXF: Exercism turned
out to be quite a
success, I think you
mentioned a figure

of 180,000 visitors in two days. How did the
infrastructure stand up in the early days?
KO: Well, I think most of those users didn’t sign
up or sign in or do anything too complicated.
The homepage was resilient enough to handle
that kind of traffic. Now it might totally fall over
because there are too many rows in the
database and things aren’t optimised.

Right now we’re running everything on
Heroku. Up until last month we were on the free
Heroku hobby dyno, but I ran into a Heroku dev
at a conference who got me some free platform
credits, so I’ve upgraded to a professional tier.
They also gave me some database credits, but
in order to upgrade the database a whole
backup and reconfigure and reload needs to
take place, and I haven’t had time or been brave
enough to do that yet.

LXF: In your talk you divided your users into
three categories: newbies, polyglots and
artisans. What do these three archetypes
want out of their coding experiences?
KO: Code newbies are who I originally thought
I wrote the site for. They’re people who are
learning to program for the first time, and
usually that’s in Java or JavaScript, or Python.

They’ve done a bunch of tutorials or
exercises where someone’s been

holding their hand and they’re
at a point where they want to

solve problems on their own.
The problem they tend to

have is how to cross that
gap, and we try and teach
them how to do that in a way
that’s not unreachable. We
want for them not to take
too long to get to the other
side, but to do it in a way
where they feel they’ve
accomplished something.
Then we give them problems
that are more complex. We

lead them through this process and they might
discover, “Oh, I don’t really know how loops
work.” Then they’ll have to go off and do a deep
dive and figure out how to do that. So it’s all
about the small wins.

The polyglots, they’re experienced
programmers, they usually know at least a
couple of languages and might use them
professionally. They might find themselves
suddenly having to learn Clojure at work or
something and one of the fastest ways for them
to do that is through lots of small exercises.

They tend to get feedback like, “Hmmm,
your Clojure looks like Ruby. It shouldn’t. Here’s
how to do it in Clojure-looking Clojure.” There
are other polyglots who just do exercises for the
sake of learning a new language, or for the pure
enjoyment that comes with solving problems.

For the artisans, they’re concerned with the
deep reflection over design trade-offs. So even
though you might have just a 20- or 30-line
program, they want to know what it would look
like if we did it in a functional style, or if we
pushed object orientation as far as we can, how
it could be done without conditionals. They’ll set
interesting constraints for themselves, maybe
trying to optimise for the most beautiful
readable code possible, or maybe at the other
extreme: “Can we do this in one line of Python?”

LXF: Have you received much heart-warming
thanks from Exercism users?
KO: I’ve gotten a lot of wonderful emails. One of
them said ,“A year ago I wasn’t programming
and now, thanks to Exercism, I have my
first junior developer job.” Another was from
a Lua programmer who was doing game
development and ended up getting a job with
fast.ly doing stuff with Go. The awesome thing
about that was when she started working at
fast.ly she was the only one that knew how to
do test suites. That was because every exercise
on Exercism has a test suite, so she was familiar
with how all that stuff works. LXF

